# **Cells to systems**

Organisation of the Human body:

- 1. Chemical level
- 2. Cellular level
- 3. Tissue level
- 4. Organ level
- 5. Body system level
- 6. Organism level

## 1) Chemical Level

All matter is a combination of atoms:

- Oxygen
- Carbon
- Nitrogen
- Hydrogen
  - Make up 96% of total body chemistry

These atoms then combine to make molecules:

- Fatty acids
- Amino acids
- Nucleotides
- Sugars
- (FANS)

# 2) <u>Cellular level</u>

- Atoms and molecules need to be packed and arranged in precise ways to form cells
- Cells are the fundamental structural and functional units of a living organism
- Cell is smallest unit for carrying out processes associated with life
- Exist alone (e.g. bacteria is single cell that carries out all functions for living ) or in a group in multicellular organism (e.g. red blood cells exist in groups with other types of cells to form human body)

## **Basic Function:**

- Obtaining oxygen and nutrients from the environment and converting it to energy
- Eliminating wastes or bi-products (e.g. CO<sub>2</sub>)
- Synthesise proteins and other components for cells structure/growth/function
- Cells have specialised functions in multicellular organisms
- Kidney cells: selectively retain the substances needed by the body while eliminating unwanted substances
- Muscle cells: produce intracellular movement
- Morphology: study of gross structure of an organism

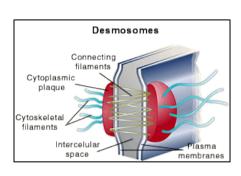
# Cell to Cell Adhesions:

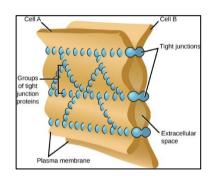
- Plasma membrane encloses the contents of each cell and acts as the outer boundary
- Plasma membrane also involved in cell adhesions
- 3 types of cell to cell adhesions:
  - 1) Cell adhesion molecules
  - 2) Extracellular matrix
  - 3) Specialised cell junctions
    - Desmosomes (adhering junctions)
    - Tight junctions (impermeable junctions)
    - Gap junctions (communicating junctions)

## 1) Cell adhesion molecules

- Proteins that protrude from outer membrane surface to form loops and hoops
- Binds to other cells or forms extracellular matrix

## 2) Extracellular matrix (ECM)


- Molecules are secreted by the cell creating a complex meshwork of proteins and carbohydrates called the extracellular matrix (ECM)
- The extracellular matrix is directly connected to the cells it surrounds
- Gives structural and biochemical support
- 3) Specialised cell junctions Desmosomes (adhering Junctions)
  - Attachment between 2 non-touching cells (physical cells don't touch but the filaments link)
  - Strongest attachment
  - Plaque located in the inner surface, filaments link adjacent cells

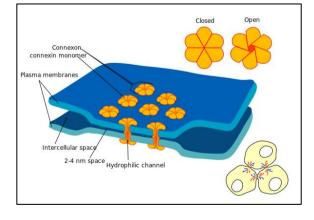

\*intercellular space: space occurring between cells

\*\*extracellular space: space outside cells

## 3) Specialised cell junctions – Tight junctions (impermeable junctions)

- Adjacent cells bind at point of direct contact
- Seals off passageway between cells (prevents movement of materials between cells, hence the name impermeable)






## 3) Specialised cell junctions – Gap junctions (communicating junctions)

- Adjacent cells connect by small connecting tunnels (called connexions)
- Connexion: hollow tube like structure that extends through the plasma membrane
- Molecules, ions and electrical impulses can directly pass through a regulated gate between cells (hence the name communicating)

## 3) Tissue level

Cells combine to form tissues



Muscle tissue

- Consists of cells specialized for contracting, generating tension and producing movement
- Skeletal muscle: moves the skeleton
- Cardiac muscle: pumps blood out of the heart
- Smooth muscle: controls movement of contents through hollow tubes and organs (e.g. movement of good through digestive tract)

## Nervous tissue

- Consists of cells specialized for initiating and transmitting electrical impulses to relay information
- Such signals are important in communication, coordination and control
- Found in brain, spinal cord, nerves and special sense organs

#### Epithelial tissue

- Consists of cells specialized for exchanging materials between the cell and environment
- Any substance that enters/leave body must cross epithelial layer (e.g. skin)
- 2 general structures:
- -Epithelial sheets: layer of tightly joined cells
- -secretory glands: specialized for secretion

#### Connective tissue

- Consists of cells specialized for connecting, supporting and anchoring various body parts
- E.g. tendons: attach skeletal muscles to underlying structures
- E.g. bone: gives the body shape, support and protection
- E.g. blood: transports materials from one part of the body to another

#### 4) Organ level

- 2 or more types of primary tissue organised to perform a particular function
- E.g. the human eye

#### 5) Body system level

- Groups of organs organised into body systems
- Circulatory, digestive, respiratory, urinary, skeletal, muscular, integumentary, immune, nervous, endocrine, reproductive

#### <u>Homeostasis</u>

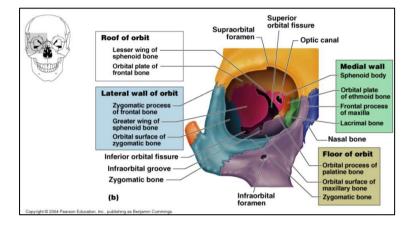
- Maintenance of a relatively stable internal environment
- Aims to establish optimal condition, balanced and steady state
- Functions performed by each body system contribute to homeostasis
- Body detects deviations from normal internal environment, integrates this information and makes adjustments

#### Control systems

- 1) Intrinsically controlled:
  - Built into or inherent in an organ
  - E.g. skeletal muscle uses up  $O_2$ , chemical change causes the smooth muscle to relax so that the vessels dilate and bring more  $O_2$
- 2) Extrinsically controlled:
  - Initiated outside an organ to alter organ activity
  - Extrinsic control permits coordinated regulation of several organs toward a common goal, intrinsic controls serve only the organ in which they occur
  - E.g. to restore blood pressure, nervous system acts on the heart and blood vessels throughout the body

## More control systems:

- 1) Negative feedback control:
- Change triggers a response that seeks to restore the factor to normal by moving the factor in the opposite direction to the initial change
- E.g. when body temp decreases, sensors signal to the brain that generates responses such as shivering to generate heat
- 2) Positive feedback control:
- Change triggers a response that seeks to restore the factor to normal by enhancing the change; moving the factor in the same direction to the initial change
- Doesn't occur as often
- E.g. during birth, oxytocin causes contractions, as baby pushes against the cervix, this causes the release of more oxytocin and even stronger contractions
- 3) Feed forward control:
  - Anticipate and prevent change
  - E.g. when food is in digestive tract, insulin is secreted to promote storage of nutrients after they have been absorbed by digestive tract

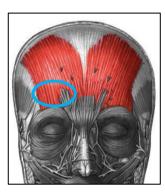

# The human eye part 1

#### The Human Eye:

- A vital human sense organ
- Takes information from the environment (in the form of light) and converts to neural signals
- Path of the light must be distinct, light scatter results in blurry image
- Various intraocular structures optical components must maintain transparency
- Eye sits within the orbit (bone and connective tissue framework) this includes:
   -extraocular muscles for movement

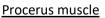
-eyelids to cover and protect anterior
ocular surface
-blood vessels and nerves

\*\*intraocular - inside the eye, extraocular outside the eye
\*\*anterior - front third of the eye, posterior back two thirds of eye

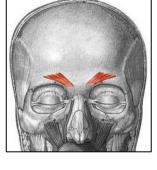


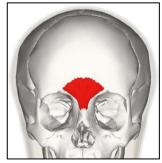

#### **Eyebrows**

Muscles that are located in the forehead produce eyebrow movements. All the muscles are innervated (supplied by) the facial nerve (CNVII)


#### Frontalis muscle

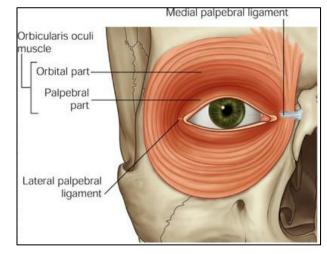
- Starts high on the scalp and inserts into connective tissue near the superior orbital rim
- Vertically oriented fibres
- Allows for eyebrows to be raised





#### Corrugator muscle

- Originates from the frontal bone to skin superior to the medial brow
- Draws eyes medially (towards middle) and inferiorly (below)
- Creates vertical furrows between brows

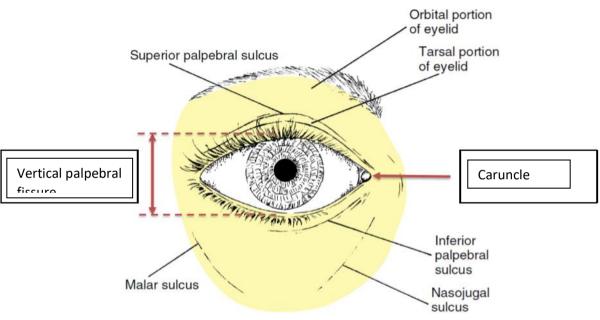



- Originates from nasal bone and inserts into medial side of frontalis
- pulls the medial (middle) portion of the eyebrow inferiorly (down)
- produces horizontal furrows over the bridge of the nose





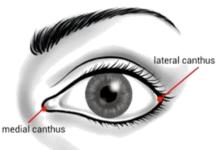
#### Orbicularis oculi


- ring-like band of muscle which lowers the entire eyebrows and closes eyelids. It can be divided into regions
- Orbital: closes eyelids controlled by voluntary action
- Palpebral: occupies area of eyelid and closes to the eyelid margin. Closes eyelid gently in involuntary or reflex blinking
- Lacrimal: facilitates emptying of lacrimal sac



#### **Eyelids**

#### Functions:


- Cover the eye for protection
- Spread tears across ocular surface
- Draining of tears
- Contains glands that produce parts of the tear film



- Palpebral fissure: area between open eyelids
- Caruncle: small pink mass of skin
- Tarsal portion: lies closest to the eyelid margin and rests on the globe (i.e. the eyeball)
- Orbital portion: extends from the tarsus to the eyebrow
- Superior palpebral sulcus: the furrow that separates the tarsal and orbital portions
- Inferior palpebral sulcus: lies in the lower eyelid and which separates the lower lid into tarsal and orbital portions (it is not as distinct)
- Medial canthus: inner eye
- Lateral canthus: outer eye

\*\* note the medial canthus is just the inner part of the eye, the caruncle is the pink mass. They are different

\*\* Medial rectus of right eye is one left side and medial rectus of left eye is on right side

