BCH2011: Structure and Function of Cellular Biomolecules

Lecture 1: Introduction

- Aim: provide students with an understanding of biochemistry
- Blood cells are the same size as capillaries- squeeze through them
- Glucose molecule = quite small
- Prac session manual- hard copy distributed at session 1
- Must complete pre-prac questions/exercise

Lectures 2-5: Chemical Foundations of Biology

OBJECTIVES:

- To review fundamental chemical concepts needed to understand introductory biochemistry
- To understand the structure of water, particularly the role of hydrogen bonds
- To understand the importance of hydrogen bonds to the structures and behaviour of biomolecules, particularly DNA and RNA
- To understand that water ionises and this gives rise to the concepts of pH and ionisation of biomolecules in water
- To understand the importance of bonding systems (particularly hydrogen bonds) to the behaviour of biomolecules
- To understand the influence of water on the association of nonpolar molecules in an aqueous environment

KEY CONCEPTS:

- Molecular structure and (covalent) bonding
- Organic molecules and functional groups
- Ionisation
- Non-covalent interactions
- Equilibrium, free energy, enthalpy and entropy
- Kinetics (rates of reactions)

1. Chemical Structure and Bonding:

- Bonding controls structure
 - Structure controls interaction of molecules with one another
 - Molecular Shape
 - Bond rotation
 - $\circ~$ Groups want to maximise distance to minimise repulsion
 - Chirality → property of a molecule that means it's mirror image isn't identical to it
- Molecular Structure and Bonding
 - Functional Groups
 - OH- hydroxyl
 - COO-, carboxylate
 - Electronegativity: H,C<N,O

- Structure of Water
 - o **H2O**
 - Bonds are polar
 - Condensation reactions (removing water)
 - Hydrolysis reactions (adding water)
 - Addition (adding water with only one product)
 - Elimination (removing water with only one reactant)

2. The Structure of Water and Hydrogen Bonds:

- Water forms hydrogen bonds
 - Non-covalent interactions
 - Far weaker than covalent bonds
 - Longer than covalent bonds
 - Easily broken and reformed
 - o In ice, each water molecule forms four hydrogen bonds
 - Vapour form- no hydrogen bonds
- Structure of Liquid Water: Flickering Cluster Model
 - ~85% of molecules live in small hydrogen bonded clusters
 - Clusters of variable size
 - Other 15% of water molecules are "free" → not hydrogen bonded to any other molecules
 - All molecules are in a rapid flux; clusters are constantly growing, shrinking, breaking apart & reforming
 - Number of H bonds is not max and they are constantly being broken and reformed
 - Clusters progressively breakdown as the temp is raised
- Hydrogen bonds are common non-covalent interactions
 - Occur in biological molecules containing N and O atoms
 - Strongest when the three atoms involved lie in a straight line
 - Linear = strong, Bent=weaker

3. Hydrogen Bonds in the Structures of DNA and RNA:

DNA and RNA carry information to encode the structures/functions of proteins

- Structure of DNA
 - Polymer
 - Repeating string of many similar units
 - Double stranded (2 polymer)
 - Starts at 5' and finishes at 3' end
 - Opposite stand starts from bottom at $5' \rightarrow 3'$ (antiparallel)
 - T→A (2 bonds), G→C (3 bonds), isomorphus
- Structure of RNA
 - When made is a single strand
 - Sugar is ribose (not deoxyribose like DNA)
 - Thymine is replaced with Uracil (U)
 - RNA hairpin look
 - tRNA- involved in translation (how cell translates from mRNA to protein sequence)
- Transcription (DNA \rightarrow RNA)
 - Double-stranded DNA
 - Single-stranded DNA
 - Double stranded DNA-RNA hybrid (Thymine replaced with Uracil on RNA strand)
 - Single stranded RNA

4. Chemical Equilibrium and Free Energy:

- Many Biochemical Processes are Reversible
 - O Dynamic Equilibrium → rate of forward reaction equals rate of reverse reaction
 - Equilibrium is the constant rate of the complex
- Equilibrium Constant (Keq) and Free Energy Change (delta G)
 - $\circ \quad \mathsf{A} + \mathsf{B} \longleftrightarrow \mathsf{A}\mathsf{B}$
 - At Equilibrium: [AB] = Keq[A][B]
 - Keq is relative stability of AB compared to A+B
 - More stability= lower Gibbs Free Energy (G)
 - Delta G = -RT ln(Keq)
 - Delta G < 0 ←→Keq>1
 - Association and Dissociation Equilibrium Constant
 - Association: Ka = [AB]/([A][B])
 - Dissociation: Kd = ([A][B])/[AB] = 1/Ka

5. The Acid-Base Chemistry of Water:

• $H_2O \leftarrow \rightarrow H^+ + OH^-$, H2O can ionise to release a proton

BCH2011 Monash University Semester 1, 2016

- $H_2O + H^+ \leftrightarrow H_3O^+$, Can also accept a proton to form a hydronium ion
- In pure water, H⁺ (or H₃O⁺) and OH⁻ are present in equal concentrations (10⁻⁷M at 25°C)
 - \circ [H⁺][OH⁻] = 10⁻¹⁴ M²
- High pH, high concentration, OH⁻ ions, basic
 - Most enzymes and other biomolecules have optimum pH values for:
 - their activities, and
 - maintenance of their structures

[H*] and [OH⁻] in mol.L⁻¹

- Enzymes are the result of evolution, producing them the right way with the appropriate properties
- pH and molecular charge: weak acids and bases
 - pK_a = pH at which the group is 50% deprotonated
 - High pH \rightarrow deprotonated form only
 - Low pH → protonated form only
- Weak acids deprotonate faster
- pK_a is a different value for different acidic groups
- Many biological molecules contain more than one dissociable proton
- The charge on such molecules is dependent on pH in a complex manner
- Buffering region \rightarrow either side of pK_a value
- RULE OF THUMB:
 - When $pH=pK_a$ the ratio [A]:[HA] = 1:1
 - For each pH unit above the pK_a, the ratio [A]:[HA] increases 10fold
 - $\circ~$ For each pH unit below the $pK_a,$ the ratio [A]:[HA] decreases 10-fold

6. Energy and Entropy; Water as a Solvent and the Hydrophobic Effect

- Formation of bonds/interactions decreases the energy (enthalpy, H) of a system
- Entropy (s) opposes formation of interactions
- Some times energy(H) wins & sometimes Entropy (S) wins
- Free energy, Enthalpy and Entropy
 - $\circ A + B \leftrightarrow AB$
 - $\circ~$ A decrease in enthalpy (Delta H<0) favours a process
 - A increase in entropy (Delta H> 0) favours a process
 - Most processes involve both Delta H and Delta S