CHM1011

Lecture 1 - Atomic Structure

Discovery of the Atom

- Dalton (discovered atom)
- J.J Thomson (discovered electron through cathode rays)
- Millikan (measured the electron's charge)
- Becquerel and Curies (discovered radiation)
- Rutherford (discovered nucleus)
- Mass Spec. (discovered isotopes)

<u>Lecture 2 - Light and Matter</u>

Spectrum of Light

- All electromagnetic radiation travels at the same velocity
- Speed of light is 3.00×10^8 m/s
- λ = Wave length of light
- Relationship between frequency and wavelength is $v\lambda = c$
- Wavelength (m), frequency (Hz or s⁻¹) and amplitude (intensity)

"Quanta" and The Photoelectric Effect

- Planck assumed that energy comes in packets called quanta
- Einstein concluded that "photons" have energy proportional to frequency \rightarrow E=hv (h is Planck's constant; 6.63 x 10⁻³⁴ J s)
- Einstein proved that light had properties of quanta, they weren't just waves
- Atomic emission (where energy is released), a specific sequence of colours is emitted for each individual element

Quantum Mechanics

- Wave Particle Duality → Light possesses both wave-like properties as well as particle-like properties
- De Broglie proposed that matter should exhibit WPD properties given by $\lambda=h/p$; where p=mv
- Electrons have wavelength motions that are restricted to an orbit of fixed energy called resonant waves
- Schrödinger's "wave equation", using ψ to determine the probability of the location of an electron

Lecture 3 - Atomic Orbitals

Orbits

- Probability Density: $\Psi^2 \& R(r)^2$
- The probability density describes the probability of finding an electron at a point in space with respect to the nucleus (r)
- Radial Distribution Function/Electron Density: 4πr²R(r)²
- The probability of an electron being found in an outer shell is greater than the shells before it due to increasing volume

Quantum Numbers

- Every electron will have a unique set of quantum numbers
- Principal: n, takes positive integers, represents orbital energy (size)
- Angular Momentum: l, takes integers from 0 to n-1, represents orbital shape
- Magnetic: m_l , takes integers from -l to 0 to +l, represents orbital orientation
- Spin Number: m_s , takes either $+\frac{1}{2}$ or $-\frac{1}{2}$, represents the spin of the electron (up or down)
- A set of quantum numbers describes the possible locations for each individual electron
 - When l = 0, the orbital is s
 - When l = 1, the orbital is p
 - When l = 2, the orbital is d
 - When l = 3, the orbital is f

Atomic Orbitals

- The shape of an orbital by where an electron is likely to be found 95% of the time (region of space)
- Drawn on a x,y,z axis
- s orbitals have a spherical shape (when l=0)

• p orbitals have a 'dumbbell' shape and can have three orientations (when l=1). Known as p_x, p_y, p_z as there are three values for m_l

• d orbitals can have five orientations (when l=2). Known as $d_{xy}, d_{yz}, d_{xz}, d_{x-y}^{2-2}, d_{z}^{2}$ as there are five values for m_l

