Animal Science

Contents:

- 1. Behaviour
- 2. Reproductive systems
- 3. Growth and maturity
- 4. Lactation system
- 5. Sensory system
- 6. Integumentary system
- 7. Endocrine system
- 8. Nervous system
- 9. Immune system
- 10. Respiratory system
- 11. Cardiovascular system
- 12. Skeletal system
- 13. Muscular system
- 14. Locomotion
- 15. Digestion and nutrients
- 16. Urinary system
- 17. Bees

Behaviour:

Define Ethology:

- Study of animal behaviour
- Involves observations of animals actions and reactions to different stimuli

Describe importance of animal behaviour to a variety of situations:

- Humans need to understand
 - o Early humans- ambush prey, protection from dangerous animals
- Early ethology- Pavlov: turned light on or rang bell before feeding dogs, found dogs salivated to cue
- Recent research
 - Aspects of animal welfare encourage research
 - Attitudes influenced by religion, political and personal philosophies- e.g. pigeons in cities vs. Hindu temples
- Observations can lead to deductions about internal state of animal or its welfare, e.g. reproductive status, health, age
- Production animals
 - Work with natural instincts, rather than fighting against them

- Need to modify responses to their instincts, rather than trying to modify their responses
- o Animal handling becomes easier and production is increased
- Companion animals- predator vs. prey behaviour
- Wildlife- conservation, biodiversity, comparisons of domestic animal behaviour provides us with insights into behaviour of wild animals

Describe methods of animal communication:

- Behaviour based on animal's perception of its environment
- Sensory system collects info (stimuli) from enviro and send sit via PNS to CNS (brain) for processing, animal then chooses whether to act on it
- Stimulus → animal → response

Sensory system:

- Use to communicate, e.g. stomping, vocalisation- alert other to danger; pheromonessignalling mating readiness
- Components
 - Chemical receptors in nose and tongue
 - Mechanoreceptors in skin
 - Ears, eyes, others (lateral line)

Compare innate and learned behaviour:

- Innate- instinctive
- Learned- change in behaviour (adaptation), as result of experience
 - o Favoured in unpredictable environments
 - Passing on of traditions, e.g. JAP macaques in hot springs, elephants locating fruiting trees
 - Requires memory
 - Skill learning- e.g. determination of bite efficiency required to kill prey animal
 - Habituation- repeated or continuous presentation of an irrelevant stimulus to animal results in decline in probability of occurrence of subjects initially elicited responses, e.g scarecrow
 - Discrimination (perceptual learning)- able to discriminate between 2 objects, e.g. rat pushing circle rather than triangle to obtain food
 - Conditioning (associative learning)- most common animal behaviour studied, whereby animal forms association with a previously neutral stimulus and a previously significant stimulus, e.g. ringing bell or turning on light and feeding dog

Describe importance of animal behaviour for production purposes:

- Major drives- hunger, aggression, escape, reproduction
- Minor drives- play, sleep, exploratory/curiosity, migratory (some species)
- Domestication has led to reduction in drives in domestic animals
 - Food readily available, shelter from extremes of temp is provided, protection from predators has been provided

- Exploration/fear behaviour
 - Both aroused by novelty or unfamiliarity
 - Both dependent on developmental stage of sensory system, e.g. exploratory behaviour- young may use touch or localisation to locate mother
- Fear behaviour, e.g. flight zones
 - Most domestic species have excellent peripheral vision, predators have bifocal
 - Vision affects how an animal will react to movement within flight zone
 - Flight zones differ between species for different reasons, e.g. prey animal that has never seen humans before, mother with calf
 - Knowledge of diff flight zones (movement) improves livestock management, husbandry and yarding, e.g. use them to move around paddock

0

Describe the importance of social structures in animal behaviour:

- Most production animal display social order/structure, e.g. flock, herd
- Some genetically predisposed to certain levels of hierarchy- avoids confrontation, e.g. dogs and wolves (matriarch)
- Type of structure dependent on
 - Size restrictions, e.g. size of territory that can be successfully defended, food resources available compared to those required
 - o Sex, e.g. lion prides usually have one male, some animals solitary
 - Habitat and climate restrictions
- Diff types of behaviour directly related to social structures
 - Dominance behaviour- usually observed among males, may be resource based,
 e.g. bulls, stallions
 - Aggressive behaviour- antagonistic or hostile, e.g. defending young/territory, predator/prey interactions, trained guard dogs (learned behaviour)
- Importance of social structure- safety in numbers (e.g. antelope), livestock transport (transport herd animals in small groups), intensive agricultural systems, zoo exhibits (how many, composition), breeding programs

Discuss examples of different types of animal behaviour:

- Sexual/reproductive behaviour
 - o Behaviour changes in young animals during puberty
 - Courtship behaviour
 - Males energy not wasted on unreceptive females
 - Oestrus females unlikely to be missed by males
 - Strengthens monogamous bond in some species, e.g. albatross, JAP cranes dance, male birds may present food or nest material to females
 - Mating behaviour
 - Understanding important in farm and zoo breeding programs (esp. artificially)
 - Identification of females receptiveness
 - Importance of male libido for semen collection
- Self-maintenance behaviour
 - Cleaning, keeping in good condition

- E.g. preening, dustbathing, rubbing against object, comfort seeking- wallowing, moisture and shade seeking behaviour in pigs
- Stereotypical behaviour
 - o Indicator of frustration or anxiety, e.g. pacing in zoo animals
 - o Intensity (frequency, duration) proportional to severity of anxiety or stress
- Sleep behaviour
 - Little known in animals
 - Driven by- circadian rhythms (controls sleep/wake cycles), ecological requirements, e.g. nocturnal species, predator avoidance
 - Important in intensive systems and zoos
- Ingestive behaviour
 - Search for, locating and digesting food
 - Dependent on diet and digestive system, e.g. grazer vs. browser, ruminant vs. non-ruminant
- Parental behaviour
 - Not all species
 - Male may exhibits exclusive parental behaviour, e.g. emus, seahorses
 - In most species, young are cared for exclusively by mother→ maternal behaviour
- Maternal behaviour
 - Importance- successful rearing of offspring, successful gene transfer, optimise production animal system (reduce incidence of mortality, abandonment, hand feeding)
 - Uses large amounts of time, effort and resources in most animals
 - Largely related to hormonal levels of oestrogen, progesterone, prolactin and oxytocin
 - Hormones influence odour preferences
 - Often 1st time mothers are less maternal and have reduced hormone levels
 - May include intolerance to other animals/humans (protective)

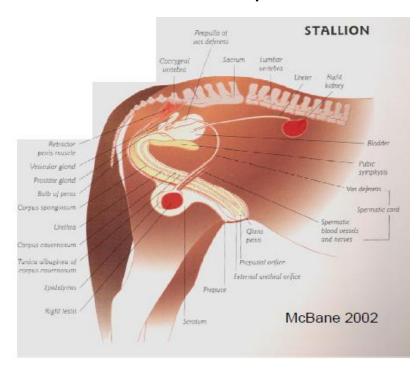
Sheep:

Maternal and neonatal behaviour:

- Bonds occur within 5hrs- requires smell, sound and suckling
- Young swapping (mismothering) can occur when ewes give birth at similar times
- Movement stimulates maternal behaviour and mother cleans young, may eat placenta
- Young must suckle quickly to form maternal bond and obtain immunity (colostrum)
- Failure to gain maternal bond may lead to perinatal mortality with most deaths (80-90%) occurring in 1st week of life- hypothermia, mismothering, infectious disease, starvation, predation

Domestication:

- Produce wool and meat
- Behaviour
 - Low/reduced aggression to humans due to reduced anti-predator behaviour


- Flocking and maternal behaviour
- Effective reproduction in captivity and no need to select their mate
- o General adaptability- transport, no specific diet, varying climates

Reproductive Systems:

Describe function of the reproductive system:

- Produce young
- Pass on genes
- Male- development, production, storage and deposition of spermatozoa into the female tract and addition of fluid to enhance survival in female tract
- Female- site of fertilisation and development of young (mammals, some reptiles and fish) or egg production (birds, reptiles, fish)

Name the structures of the male reproductive tract and their function:

Scrotum: houses testes

- Outside body- cattle
- Inside body- elephants
- o Descend into pouch, not true scrotum (in/out)- rabbits
- Position largely temp dependent (cremaster muscle)

Testes: produces sperm via meiosis

Epididymis: stores mature sperm

- Carried to epididymis by efferent ducts
- Undergo final maturation here
- Some species have ampulla- enlarged vas deferens