8. Cardiac Function & Arrhythmias

Myocardial cells

- Sarcolemma: cell membrane
- Intercalated disk: gap junctions bet
- T-tubules: pathway for electrical impulses
- Sarcoplasmic reticulum: house intracellular Ca²⁺
- Mitochondria: 35% of cell volume (typically relies on aerobic metabolism/maintain oxygen levels)

Myocytes ion movement and channels

- Ion movement across the membrane serves as the basis of the action potential
- Depends on two major factors
 - Energetics
 - Concentration gradient: diffusion from areas of higher concentration to lower concentration
 - Transmembrane potential (voltage): electrical potential of a cell exerts electrical force on ions (membrane potential -90mV)
 - Permeability
 - Phospholipid bilayer is not permeable to charged particles
 - Dependent upon specific voltage-gated ion channels

ECF			ICF	
[Na ⁺]	145mM	[Na ⁺]	15mM	
$[K^{+}]$	5mM	$[K^{+}]$	150mM	
$[Ca^{2+}]$	2mM	$[Ca^{2+}]$	0.2μΜ	
[Cl ⁻]	120mM	[Cl ⁻]	5mM	

- Cardiac resting potential channels
 - Cardiac resting potential depends upon concentration gradient and which channels are open
 - \circ Na⁺/K⁺/ATPase pump
 - Couples ATP hydrolysis to export 3 Na⁺ outward and 2 K⁺ inward
 - Causes cell to become more negative
 - o K⁺ channels
 - K⁺ outward (down concentration gradient)
 - Causes cell to become more negative
 - However K⁺ is attracted into cell as cell becomes more negative (therefore maintaining resting potential at -90mV)
- Cardiac action potential channels
 - As cell membrane potential is altered, its permeability to specific ions changes (channels become activated or inactivated)
 - Fast voltage-gated Na⁺ channels
 - At -90mV channel is 'resting' (closed)
 - Rapid depolarization causes channel to open (-70mV)
 - Spontaneously change to inactive state (cannot re-open until return to -90mV)
 - L-type Ca²⁺ channels
 - K⁺ channels
 - I_f (funny currents)

Cardiac action potential (contractile cells)

- Long duration (plateau phase allows for relaxation of myocytes)
- Self propagating
- Cell to cell (non-directional)
- Non-spontaneous
- Phases
 - Phase 0/Rapid depolarization: Most channels closed, membrane potential becomes less negative (via gap junctions) causing some Na⁺ channels to open, membrane potential reaches 'threshold potential' (-70mV), many fast voltage-gated Na⁺ channels open (Na⁺ flows into the cell), rapid depolarization (membrane potential reaches +30mV)

- Phase 1/Brief reversal: Fast voltage-gated Na⁺ channels close, some K⁺ channels open (K⁺ flows out of cell slowly), membrane potential is slightly reduced (towards 0mV)
- O Phase 2/Plateau: L-type Ca²⁺ channels open (Ca²⁺ flows into cell slowly), some K⁺ channels open (K⁺ flows out of cell slowly), balance of positive charges flowing in and out of cell, longest phase of AP (note: Ca²⁺ inside cell plays a critical role in contraction -calcium induced calcium release-)
- O Phase 3/Repolarization: Larger number of K⁺ channels open (K⁺ flows out of cell quickly), low membrane permeability for other ions, repolarization (membrane potential becomes more negative)
- o Phase 4/Resting potential: membrane potential returns to -90mV
- Refractory period
 - Period during which a cardiac action potential (contractile cells) cannot be reinitiated until membrane potential returns to near resting
 - Long refractory period ensures forward propagation and protects the heart against tetanic contracture
 - o Note: no hyperpolarization because only K⁺ channels are open during phase 4/resting potential and its equilibrium is -90mV
 - o Three refractory periods
 - Absolute RP: cell is completely unexcitable due to inactivity of fast voltagegated Na⁺ channels

Effective RP: cell can produce weak, localized AP, possible if a few fast voltage-gated Na⁺ channels have returned to resting state and become excitable

 Relative RP: cell can produce small, propagating AP (ectopic beats) since many fast voltage-gated Na⁺ channels have returned to resting state and become excitable

Cardiac action potential (pacemaker cells)

- Automaticity (self-initiate depolarization in a rhythmic fashion)
- SA node/AV node
- Shape of pacemaker cell AP differs in three ways
 - o Maximum voltage is -60mV
 - Less negative membrane voltage causes fast voltage-gated Na⁺ channels to remain inactive
 - Phase 4 is not flat
 - Ionic flux, known as pacemaker current/funny current I_f, is open during repolarization (Na⁺ moves into cell)
 - o Phase 0 upstroke is less rapid
 - Fast voltage-gated Na⁺ channels are inactive, therefore upstroke relies upon Ca²⁺ influx
- Phases
 - O Phase 0/Depolarization: threshold is reached, Ca²⁺ channels open (Ca²⁺ inflow)
 - Phase 3/Repolarization: many K⁺ channels open (rapid K⁺ outflow)
 - O Phase 4/Resting: as soon as -60mV membrane voltage is reached, pacemaker/funny current activates (slow Na⁺ inflow)
- Latent pacemakers (AV node/bundle of his, purkinje fibers, etc.) are inactivated by native pacemakers (SA node)
 - Two mechanisms
 - Pre-empting: faster and earlier depolarization of SA node pre-empts and induces AP within AV node (via intercalated discs/gap junctions) before AV node threshold reached spontaneously
 - Overdrive suppression: more frequent depolarization of AV node than its native rate due to pre-empting leads to increased [Na⁺] within the cell, causing Na⁺/K⁺ ATPase pump to increase activity, therefore leading to hyperpolarization and decreased excitability

- Latent pacemakers (AV node/terminal purkinje fibers) are inactivated by adjacent contractile cells
 - o AV node is adjacent to atrial myocytes
 - Terminal purkinje fibers are adjacent to ventricular myocytes
 - Tendency for contractile cells to hyperpolarize nearby latent pacemakers (resting membrane potential of contractile cells is -90mV) therefore decrease excitability
- Impulse conduction
 - o Propagation of electrical signal from one cardiac cell to another across gap junctions
 - o Signal originates in SA node in right atrium (100 110 bpm native rate (slowed down by vagus nerve) → [note: interatrial tract (Bachmann's bundle) allows left atrium to synchronize with right atrium] → internodal tract → AV node (60 80bpm native rate) intrinsic rate, consists of small diameter fibers and inactive Na⁺ channels leading to slow conduction, allows blood from atria to move into ventricles before ventricles contract) → bundle of His → left/right bundle branches (line walls of ventricular septum) → purkinje fibers (30 40bpm native rate, line walls of ventricles, high density of Na⁺ channels leading to rapid conduction)
- Heart rate (HR)

	Increase	Decrease
Slope of I _f	(a) - Increased HR (positive chronotropic effect) - Time required to reach threshold potential decreased - Substances that increase permeability of Ca ²⁺ and Na ⁺ - I.e. Noradrenaline and Adrenaline - SNS	(c) - Decreased HR (negative chronotropic effect) - Time required to reach threshold potential increased - PSNS
Maximum negative diastolic potential	(d) - Decrease HR (negative chronotropic effect) - Substances that increase K ⁺ permeability (hyperpolarize resting membrane potential) - I.e. Acetylcholine (increased K ⁺ and decreased Ca ²⁺ /Na ⁺) - PSNS	mV 0 - 20 - 40 - Threshold Potential Potential
Threshold potential	(b) - Decreased HR (negative chronotropic effect) - I _f must work harder to reach threshold potential - PSNS	

Excitation – contraction coupling

- Converting electrical AP into mechanical work via ATP
- Pacemaker cells → contractile cells (excitation) → contractile cells (contraction)
- Initiation: during phase 2/plateau of cardiac action potential (contractile cells) Ca²⁺ enters cardiac myocytes → increased [Ca²⁺] leads to Ca²⁺ induced Ca²⁺ release from sarcoplasmic reticulum → Ca²⁺ activates actin-myosin cross bridges → sliding filaments are pulled past each other and myocytes shortens (contraction)
- Termination: Ca²⁺ is moved into ECF or actively re-up taken into the sarcoplasmic reticulum and stored → cross bridge uncoupling → sliding filaments passively return to original position (relaxation)

ECG abnormalities and cardiac arrhythmias

- Consequences of cardiac arrhythmias
 - Atrial fibrillation: stagnation (blood remains in atria → reverse blood flow), higher venous pressure, asynchronous ventricular activation
 - Ventricular tachycardia: limited passive filling time, blood pressure and cardiac output drop (low forward blood flow)
 - O Ventricular fibrillation: total cessation of effective pumping (no forward blood flow)
- Origins of cardiac arrhythmias
 - o Abnormal impulse generation: automatic mechanisms, triggered activity
 - o Abnormal impulse conduction: slowed conduction, unidirectional block and re-entry
- Mechanisms of cardiac arrhythmias

- o Automatic mechanisms (abnormal pacemaker activity)
 - Occur when latent pacemaker cells override native pacemaker cells
 - Escape beats
 - Delayed
 - Ectopic beats (PAC/PVC)
 - Premature
 - Post-extrasystolic potentiation (following ectopic beats)
 - Extrasystole = premature beat
 - o Premature beat had less time for ventricular filling, therefore had less contractile force (Frank-Starling law)
 - Ouring compensatory pause Ca²⁺ leaks out of sarcoplasmic reticulum and into cytosol → Bowditch effect (increased [Ca²⁺] = increased contractility of following beat)
 - Note: compensatory pause also leads to increased filling time, therefore increased EDV, stretch and systolic pressure
- o Triggered activity
 - Abnormal action potentials are triggered by a preceding action potential resulting in after-depolarization
 - Early afterdepolarization: occurs during phase 2 or early phase 3 (remains relatively local due to inactive fast voltage-gated Na⁺ channels)
 - Delayed afterdepolarization: occurs during late phase 3 or phase 4 (propagates to adjacent cells due to resetting of fast voltage-gated Na+channels)
- Heart block (transient or permanent)
 - Caused by ischemia, fibrosis, trauma
 - Commonly AV block
 - Will generate escape beat/rhythm (occur in the seconds after impulse fails to reach ventricles)
- o Re-entry
 - For re-entry to occur, closed loop, unidirectional block and slow conduction must be present
- Electrolyte imbalances underlying lethal ventricular arrhythmias
 - Increased extracellular [K⁺]
 - Caused by ischemia
 - Less negative membrane potential (less K⁺ will flow out of cell down its concentration gradient)
 - Less fast voltage-gated Na⁺ channels open (due to less negative membrane potential) → phase 0/depolarization less rapid/steep → slowed conduction velocity (QRS widens) → decreased excitability (leads to unidirectional block) → re-entry and bradycardia
 - Increased distance to threshold and delay repolarization/plateau of AP
 - Decreased extracellular [K⁺]
 - Caused by starvation, anorexia, bulimia or diuretics
 - More negative membrane potential (more K⁺ will flow out of cell down its concentration gradient)
 - More fast voltage-gated Na⁺ channels open (due to more negative membrane potential) → phase 0/depolarization is more rapid/steep → increased conduction velocity → increase excitability → ventricular tachycardia or fibrillation
 - Decrease distance to threshold and shorten repolarization/plateau of AP
 - o Increased intracellular [Ca²⁺]
 - Caused by glycosides (prevent Ca²⁺ removal), catecholamines and ischemia
 - Lead to oscillatory after-potentials (via Ca²⁺ induced Ca²⁺ release) → arrhythmias

