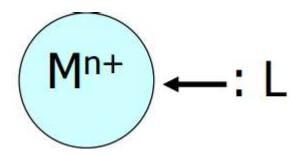
Coordination Chemistry 3min 30


Sunday, 18 October 2015 11:48 AM

Metal Cation

- Metals have a tendency to form ions (ores)
- Metal cation acidity depends largely on polarising power of Mⁿ⁺ or the value of n and the ion size
 - Higher n results in a lower pKa and a stronger acid

Ligands

- Neutral molecule or ion with a lone electron pair that can be used to bond to a metal ion
- Ligand properties change with coordination to a metal which is the principles of a catalyst
- Donor Atom: The atom in the ligand which supplies the electron pair

Hard Metals

- Carry a high charge
- Favour bonding to small, electronegative donor atoms
- Has a high degree of ionic character when bonded to a hard ligand
- Form more stable complexes with hard ligands

Soft Metal

- Have a low charge
- Large and polarisable
- Favour bonding with large, more polarisable donor atoms
- High degree of covalent character when bonded to a soft ligand
- Form more stable complexes with soft ligands

Hard Ligand

- A small, electronegative donor atom
- Has a high degree of ionic character when bonded to a hard metal
- Form more stable complexes with hard metals

Soft Ligand

- Large, polarisable Donor atom
- Has a high degree of covalent character when bonded to a soft ligand
- Form more stable complexes with soft metals

Complex Ion

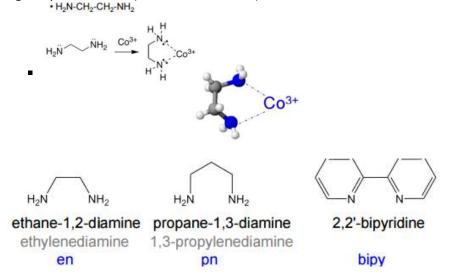
- A transition metal with a ligand attached
- Denoted by [Metal, Ligand]^{Charge}
 - Eg. [Co(NH₃)₅Cl]²⁺
 - Complex ions are always in square brackets
- The metal in a complex ion can be considered a Lewis acid (electron acceptor) while the Ligand can be considered a Lewis base (electron donor)
- Complex ion can be positively or negatively charged

Coordination Compound

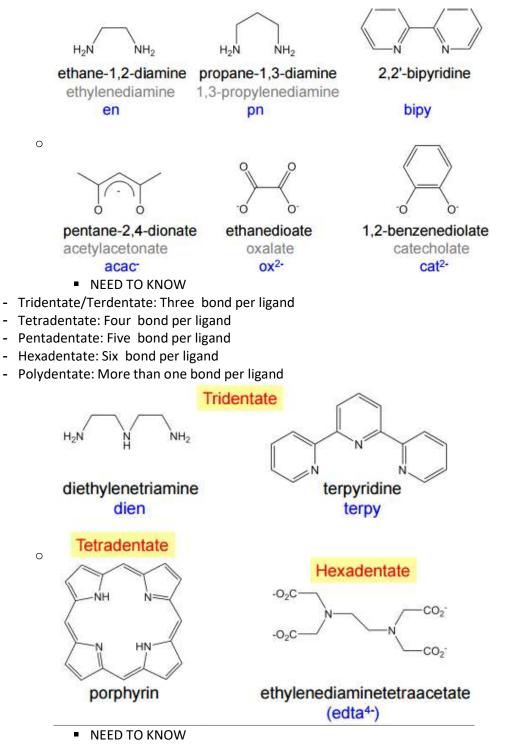
- A complex ion with counter ion/s attached making a neutral molecule
- Denoted by [Metal, Ligand] Counter-ion
 - [Co(NH₃)₅Cl]Cl₂

Coordination Number

- Denoted by CN
- The number of bonds that a metal forms with ligands
 CN = # of ligands x # of bonds per ligand
- Most common CN is 4 and 6

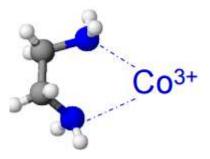

Denticity

- The number of donor atoms formed by metal ion to a single ligand in a complex ion
 Number of bonds formed between a single ligand and a metal ion
- The higher the denticity the stronger and more stable the complex ion
- Monodentate: One bond per ligand

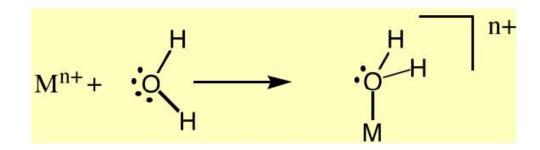

Molecule/Atom	Formula	Bonded Ligand Atom	Coordinated name
Water	H ₂ O	0	Aqua
Ammonia	NH ₃	Ν	Ammine
Carbon Monoxide	СО	С	Carbonyl
Nitric Oxide	NO	Ν	Nitrosyl
Fluoride	F⁻	F	Fluoro
Chloride	Cl-	Cl	Chloro
Bromide	Br⁻	Br	Bromo
Iodide	ŀ	I	Iodo
Hydroxide	OH-	0	Hydroxo
Cyanide	CN ⁻	M:CN⁻	Cyano
Cyanide	CN ⁻	M:NC⁻	Isocyano
Thiocyanate	SCN ⁻	M:SCN ⁻	Thiocyanato
Thiocyanate	SCN⁻	M:NCS ⁻	Isothiocyanato
Oxide	O ²⁻	0	Охо
Nitrite	NO ₂ -	M:NO ₂ -	Nitro
Nitrite	NO ₂ -	M:ONO⁻	Nitrito

NEED TO KNOW

- Bidentate: Two bond per ligand
 - Eg. Ethylenediamine (ethane-1,2-diamine) abbreviated to 'en'

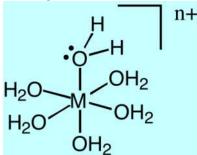

Chemistry 2 Page 94

- Ambidentate: Ligands that can bond through two or more atoms such as Nitrite, Thiocyanate or Cyanide
 - $\circ~$ Not ambidentate if it is the same atom in another position such as with H_2O


Chelating Ligands

- Polydentate ligands are chelating ligands
- From chelating rings in chelate complexes
- Very stable complexes

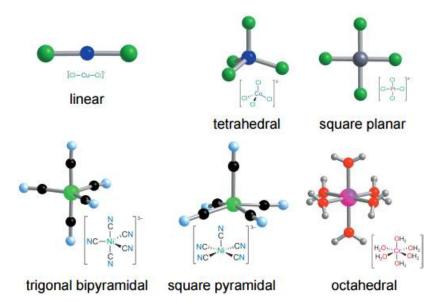
Counter Ions


- Counter complex ion charge
- Attaches to the complex ion to create a neutral molecule
- Eg. Cl⁻

Lewis acid + Lewis base \rightarrow Complex

Aqua lons

- Mostly 2+ or 3+ transition metal ions which coordinate with H_2O to give a fully hydrated complex ion
- Eg. [M(OH₂)₆]ⁿ⁺



Oxo-ion

- Highly charged ions push equilibrium
 - \circ H₂O + OH⁻ <=> O²⁻ + H₃O⁺
- Metals with a charge greater than 4+ exist as oxo-ions

Coordination Geometry

- Shape of a coordination complex

