

Topic 5: Game Theory

Making optimal decisions when it is no longer just you.

A Strategic Game consists of:

- a) Players
- b) Pure Strategies
- c) Strategy Profile
- d) Payoff / Utility Function

Strictly Dominant Strategy: A strategy that gives player i (strictly) higher payoff than any other of i 's strategies, for any strategy of the opponent.

Strictly Dominated Strategy: A strategy that gives player i lower payoff than some other strategy s^* of i , i for any strategy of the opponent.

Pure Strategy Nash Equilibrium

A strategy profile is PSNE if no player can gain by using some other strategy.

Ways to find PSNE:

- (a) Try each strategy profile or star method
- (b) Best responses meet each other

$$(\text{Home, home}): BR_A(\text{Home}) = \text{Home}, BR_B(\text{Home}) = \text{Home} \checkmark.$$

Mixed strategy: a vector of probabilities that tells us how often players will play each strategy. For example, $m_K = (0.6, 0.4)$. For example, Kicker and Goalkeeper game where there is no PSNE. There is a chance of playing left and right.

Mixed Strategy Nash Equilibrium

The following must hold:

$$u_K(L, \beta) = u_K(R, \beta).$$

$$\begin{aligned} u_K(L, \beta) &= \beta u_K(L, L) + (1 - \beta) u_K(L, R) = \beta p_L + (1 - \beta) \pi_L \\ u_K(R, \beta) &= \beta u_K(R, L) + (1 - \beta) u_K(R, R) = \beta \pi_R + (1 - \beta) p_R. \end{aligned}$$

		β	$1 - \beta$
	$K \setminus G$	l	r
α	L	$p_L, -p_L$	$\pi_L, -\pi_L$
$1 - \alpha$	R	$\pi_R, -\pi_R$	$p_R, -p_R$

$$\beta^* p_L + (1 - \beta^*) \pi_L = \beta^* \pi_R + (1 - \beta^*) p_R$$

\Updownarrow

$$\beta^* = \frac{\pi_L - p_R}{\pi_R - p_R + \pi_L - p_L}.$$

$$u_G(\alpha, L) = -\alpha p_L - (1 - \alpha) \pi_R = -\alpha \pi_L - (1 - \alpha) p_R = u_G(\alpha, R)$$

\Updownarrow

$$\alpha^* = \frac{\pi_R - p_R}{\pi_R - p_R + \pi_L - p_L}.$$

Therefore the mixed strategy NE is $((\frac{11}{15}, \frac{4}{15}), (\frac{4}{5}, \frac{1}{5}))$. This means that Player 1 must play strategy

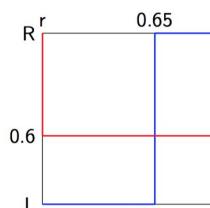
A and B with weights $(\frac{11}{15}, \frac{4}{15})$ for Player 2 to be indifferent between a and b . And Player 2 must play strategy a and b with weights $(\frac{4}{5}, \frac{1}{5})$ for Player 1 to be indifferent between A and B .

Topic 5B: Game Theory, Three Actions & Graphed Best Response

K \ G	I	r
L	0.63, -0.63	0.94, -0.94
R	0.9, -0.9	0.44, -0.44

$$\beta^* = \frac{\pi_L - p_R}{\pi_R - p_R + \pi_L - p_L},$$

$$\alpha^* = \frac{\pi_R - p_R}{\pi_R - p_R + \pi_L - p_L}.$$

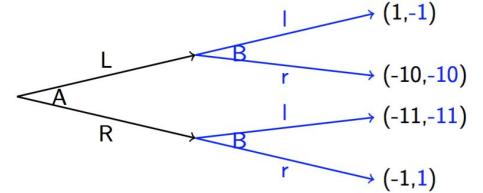


If G plays r with high probability, K wants to play L
 If G plays I with prob. 0.65, K is indifferent
 If G plays I with high probability, K wants to play R
 If K plays R with high probability, G wants to play r
 If K plays R with prob. 0.6, G is indifferent
 If K plays L with high probability, G wants to play I

The equilibrium is where the two lines cross: K best responds to the G's strategy $(0.4, 0.6)(0.6, 0.4)$ by playing $(0.65, 0.35)$ (one of the mixed strategies K is indifferent among) and G best responds to $(0.65, 0.35)$ by playing $(0.4, 0.6)(0.6, 0.4)$.

Topic 6: Game Theory: Sequential Games

Strategy in sequential game is a complete contingent plan of action for each player. For this game, the strategy profile is $(L, (I, r))$ leads to payoffs $(1, -1)$ and strategy profile $(R, (I, r))$ leads to $(-1, 1)$.



The matrix is different from simultaneous games:

A \ B	(I, I)	(I, r)	(r, I)	(r, r)
L	1, -1	1, -1	-10, -10	-10, -10
R	-11, -11	-1, 1	-11, -11	-1, 1

Nash Equilibrium vs. Backward Induction

It could be that a strategy is NE but not solution for Backward Induction.

Subgame Perfect Nash Equilibrium

A strategy profile is a SPNE if it is a Nash equilibrium in the overall game and in each of the subgames. SPNE must be a NE, but not the other way around.

Information Sets

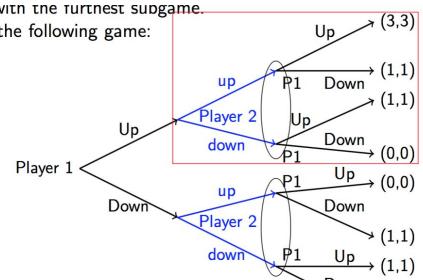
Spans the histories of a game that a player cannot distinguish. Sometimes, the subgame can become a simultaneous game when information sets is introduced. No IS in terminal nodes. Remember that in IS subgame, no need to put down three strategies.

Examples:

There is only one SPNE:

SPNE: $((Up, (Up, Down)), (up, down))$ cause there is only one NE in both information set subgame.

we start with the turtlest subgame.
 Consider the following game:



There are two SPNE:

information sets.

SPNE 1: $((Up, (Up, Up, Down, Down)), up)$

SPNE 2: $((Down, (Up, Up, Down, Down)), down)$

Cause there are two PSNE.

