AMME2262 - SEMESTER 2

Engineering thermodynamics is the science of energy that applies to the design and analysis of energy conversion systems

Energy can be:

- Thermal or internal energy (stored in molecular forces)
- Chemical energy in molecular bonds (combustion)
- Kinetic energy (motion)

- Potential energy (elevation)
- Nuclear, magnetic and electric energy
- Sum of all energies = total energy E of the system

Important Terms:

Pressure (Pa, Nm ⁻²)	• <u>Absolute pressure</u> : measured relative to absolute zero pressure (used mostly) • <u>Gage/Vacuum pressure</u> : measured relative to atmospheric pressure $P_{abs} = P_{atm} \pm P_{gage} \qquad P_{vac} = P_{atm} - P_{abs} \qquad P_{gage} = P_{abs} - P_{atm}$	
Temperature (K)	• Use Kelvin Scale for units $T(K) = T(^{\circ}\mathrm{C}) + 273.15$ • Engineering thermodynamics deals with temperatures in the range of 200K-3000K	
Force (N)	 F=ma, or where a=g (gravity) F=mg kgf, relative to local gravity 	
Pascal's law:	• The pressure applied to a confined fluid increases the pressure throughout by the same amount $P_1=P_2 \to \frac{F_1}{A_1} = \frac{F_2}{A_2} \to \frac{F_2}{F_1} = \frac{A_2}{A_1}$	

Density and specific gravity

Density (kgm ⁻³)	Specific Volume (m³kg ⁻¹)	
$\rho = \frac{m}{V} \left(kg / m^3 \right)$	$v = \frac{V}{m} = \frac{1}{\rho} \left(m^3 / kg \right)$	
Specific Weight (Nm ⁻³)	Specific Gravity	
$\gamma_s = \rho g$	$SG = \frac{\rho}{\rho_{H_2O}}$	

Determining Type of System

<u>Assumption:</u> Substances are treated as a <u>continuum</u> because of the very large number of molecules even in an extremely small volume (no need to consider on atomic level)

Properties of Systems:

Intensive Property Extensive	 Independent of System Size Temperature-T (K), Pressure-P (Pa), Density- ρ (kg/m³) Dependent of System Size 	m V T P	
Property	• Mass - m (kg), Volume - V (m³), Energy - E (J)	$\overline{}$	
Specific Properties	 Extensive Properties per unit mass that become intensive properties mass-m (kg) V/m=, specific volume (m3/kg) U/m=u, specific internal energy (kJ/kg) 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Extensive properties Intensive properties
	• E/m=e, specific energy (kJ/kg)		

Units (metric system)

All equations must be dimensionally homogeneous

Equilibrium

- System in thermodynamic equilibrium if it is in thermal, mechanical, phase and chemical equilibrium.
- Properties of system do not change over entire system

Temperature and the Zeroth law of thermodynamics

- Zeroth law states that two bodies are in thermal equilibrium if both have the same temperature reading even without being in contact
- Heat moves from hot to cold objects

Equations Of State (The Ideal Gas Equation)

Ideal Gas Equation relates pressure, temperature and specific volume of a substance. The assumptions made for it to hold true include:

- The gas is composed of a large amount of small molecules
- The gas molecules are elastic (KE is conserved)
- The size and total volume of the molecules is small relative to the volume
- Thermal motions of the gas are random

<u>Note:</u> real gases can be approximated by an ideal gas at "low" densities: "low" pressures and "high" temperatures

Substance	R, kJ/kg.K	
Air	0.2870	
Helium	2.0769	
Argon	0.2081	
Nitrogen	0.2968	

State Postulate

State postulate: The number of properties required to fix the state of a system

- The state of a simple* compressible system (i.e. A system that involves no electrical, magnetic, gravitational, motion, and surface tension effects) is completely specified by 2 independent, intensive properties
- The state of the nitrogen here is fixed by two independent, intensive properties

Pure Substances

- A substance that has a fixed chemical composition throughout.
- Air is a pure substance at atmospheric pressure and temperature, despite being a mixture of several gases

Nitrogen and gaseous air are pure substances.

A mixture of liquid and gaseous water is a pure substance, but a mixture of liquid and gaseous air is not.

Pha	ase Change	Description	
1.	Compressed liquid (subcooled liquid):	A substance that it is <u>not about</u> to vaporize (i.e. liquid phase)	
2.	Saturated liquid:	Exists as liquid that is <i>about to</i> vaporize.	
3.	Saturated liquid-vapor mixture:	The state at which the <i>liquid and vapor phases coexist</i> in equilibrium	
4.	Saturated vapor:	A vapor that is <u>about to</u> condense	
5.	Superheated Vapour	A vapor that is <u>not about</u> to condense (i.e., not a saturated vapor)	

<u>T-v diagram for the heating process of water at constant</u> pressure

• Reversing the process 5 --> 1 following the same path releases the same amount of heat as was added in The temperature at which water starts boiling depends on the pressure; therefore, if the pressure is fixed, so is the boiling temperature.

Saturation temperature T_{sat}: The temperature at which a pure substance changes phase at a given pressure.

Saturation pressure P_{sat}: The pressure at which a pure substance changes phase at a given temperature.

<u>The liquid-vapor saturation curve of a pure</u> <u>substance (water) – water boils at 100°C at 1 atm</u> <u>pressure</u>

Saturation	(boiling) pressure of
water at va	rious ter	mperatures

Temperature, T, °C	Saturation pressure, <i>P</i> sat, kPa
-10	0.26
-5	0.40
0	0.61
5	0.87
10	1.23
15	1.71
20	2.34
25	3.17
30	4.25
40	7.39
50	12.35
100	101.4
150	476.2
200	1555
250	3976
300	8588

Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

Elevation m	Atmospheric pressure, kPa	Boiling tempera- ture, °C
0	101.33	100.0
1,000	89.55	96.5
2,000	79.50	93.3
5,000	54.05	83.3
10,000	26.50	66.3
20,000	5.53	34.7

At a given temperature if:

- Pressure < liquid-vapor saturation pressure = vapor
- Pressure > liquid-vapor saturation pressure = liquid

At a given pressure if:

- Temp. < liquid-vapor saturation temp. = liquid
- Temp. > liquid-vapor saturation temp. = vapour

Latenet Heat

Latent heat:	amount of energy absorbed or released during a phase- change process
Latent heat of fusion:	amount of energy absorbed during melting (equal to energy released during freezing)
Latent heat of	amount of energy absorbed during vaporization (equal to energy released

*Magnitudes of the latent heats dependent on temp. or pressure at which the phase change occurs.

e.g. At 1 atm pressure, the latent heat of fusion of water = 333.7 kJ/kg and the latent heat of vaporization = 2256.5 kJ/kg.

Consequences of T_{sat} and P_{sat} Dependence

The variation of the temperature of fruits and vegetables with pressure during vacuum cooling from 25°C to 0°C

Ice made by evacuating air space in water tank

The temperature of liquid nitrogen exposed to the atmosphere remains constant at -196°C and thus maintains the test chamber at -196°C

T-v diagram of constant- pressure phase-change processes of a pure substance at various pressures (numerical values are for water)