Lecture 13-18 – B CELL BIOLOGY AND DISEASE MODULE 3

• Primary immune deficiencies (PID's)

- There are 8 classes of PID's spanning the adaptive and innate immune systems
- PID's are a large group of disorders that result in recurrent infections and that are NOT caused by other diseases, treatments or environmental exposure to toxins
- Mostly genetic disorders, most are diagnosed in children under 1 year
- Results in the patient being unable to make an appropriate immune response to one or more groups of pathogens – can be lethal
- Most are not associated with lymphocytes

PID classification	Examples of PIDs	
Combined T and B cell deficiencies	 Severe combined immunodeficiency disorder (SCID) Complete DiGeorge syndrome CD40 and CD40L deficiencies (HIGM) 	LECTURE 1
Well-defined syndromes with immunodeficiency	 Wiskott-Aldrich syndrome (WAS) Ataxia telangiectasia Hyper IgE syndrome 	
Diseases of immune dysregulation	Lymphoproliferative syndromesFamilial haemophagocytic lymphohistiocytosisCD24 deficiency	
Congenital defects of phagocyte number or function, or both	 Severe congenital neutropenia, X-linked neutopenia X-linked chronic granulomatous disease (CGD) Leukocyte adhesion deficiency (LAD) 	
Innate immunity deficiencies	• TLR3/TBK1/UNC93 deficiency (Herpes encephalitis) • IL17A, IL17F, IL17R deficiency, STAT1 GOF (candidiasis)	
Auto-inflammatory disease	 Familial Mediterranean fever TNF-R-associated period syndrome (TRAPS) 	
Complement deficiencies	• Various	
Antibody deficiencies	 CD40 and CD40L deficiencies (HIGM) Ig deficiencies (X-linked agammaglobulinaemia, XLA; X-linked lymphoproliferative disease, XLP; selective IgA deficiency) Common Variable Immunodeficiency (CVID) 	LECTURE 2 LECTURE 1 LECTURE 2

- Common inherited disorder particularly in people of northern European background
- Variable severity severe forms have poor prognosis no present cure will eventually lead to death
- Improvements in treatment have resulted in increased lifespans over the years
- Death usually due to respiratory failure/cardiac complications
- Multiple systems affected: including respiratory, digestive, reproductive
 - All systems are affected by the production of excessively thick, dehydrated secretions of mucus in epithelial cells
 - Caused by mutation in a key protein which results in the failure of salt (specifically chloride ions) and subsequently water transport by epithelial cells lining ducts
- Clinical features: respiratory
- Frequent coughing
- Chronic infections
- Lung damage
- Due to:
 - Obstruction of bronchioles by mucus
 - o Colonisation by bacteria, especially antibiotic resistant strains
 - o Damage (fibrosis) caused by inflammatory responses
- Clinical features: digestive
- Failure to thrive (malnutrition)
- Chronic malabsorption of certain nutrients
- Due to:
 - o Blockage of various intestinal and pancreatic ducts by mucus
 - o Poor digestion of fats (mainly) and proteins
- Intestinal obstruction in newborns ('meconium ileus; 15% of neonates with CF)
- Pancreatic insufficiency (85% patients) depends upon the particular mutations involved
- Chronic pancreatitis (and diabetes, 40% adults), liver disease (>5%) long term complications
- Clinical features: reproductive
- Infertility in males
- Sub-fertility in females
- Due to:
 - Blockage of vas deferens in males leading to fibrosis or usually atrophy: congenital bilateral absence of the vas deferens (CBAVD)
 - Cervical mucus in females acting as a barrier to passage of sperm
 - o Females may be anovulatory