Week 1 - Introduction

► Literature Review Notes:

- Use peer-reviewed research
- What is the question asking identify relevant theoretical/conceptual issues, critical evaluation
- Group and categorise of similar issues
- Read annotate think sort report
- Identify your own argument → what conclusions can you draw from your reading that addresses the specific questions? Can you use examples to illustrate your points?
- Use cautious language

Overview of Developmental Theories:

- <u>Developmental psychology:</u> Systematic changed and continuities in the individual that occur between conception and death
- Types of change:
 - ⇒ Positive change: growth in competence or capacity
 - ⇒ Negative change: loss of competence or capacity
 - ⇒ Quantitative change: more or less of something e.g. weight, height, vocab
 - ⇒ <u>Qualitative change:</u> involves the appearance of something new e.g. new behaviour (sitting-crawling-walking) and reorganisation of thought and action
 - ⇒ Normative change: universal virtually all children share e.g. walking, talking
 - ⇒ Individual change: variability different rates/sequences of development, uniqueness
- Developmental processes:
 - ⇒ <u>Maturation:</u> the biological unfolding of the individual according to a plan contained in the genes nature
 - ⇒ <u>Learning</u>: the process through which experience brings about relatively permanent changes in thoughts, feelings or behaviour nurture
 - ⇒ <u>Epigenetics:</u> the process through which experience and environment can influence gene expression

■ Baltes: A lifespan perspective

- 7 key assumptions about development:
 - 1. Lifelong process any single period of development is best understood within a lifespan context
 - 2. Multi-directional growth, decline and stability can occur at any age
 - 3. Involves both gains and losses at every age
 - 4. Lifelong plasticity change in response to positive and negative experiences
 - 5. Historically embedded cohort effects
 - 6. Contextualise as a paradigm
 - 7. Understanding development requires multiple disciplines
- Individuals respond to and act on contexts: physical environment, historical context, social context and cultural context
- Normative age-graded influences: biological and environmental influences that are similar for individuals in a particular age group (in a particular context)

Bronfenbrenner: Ecological theory

- Microsystem: parents, siblings, surroundings
- Mesosystem: Interrelationships among influences (microsystem)
- Exosystem: extended family, parent's workplace, community facilities, friends and neighbours
- Macrosystem: country's customs, values, laws political climate
- Chronosystem: dimension of time historical context

Contextual-systems theories:

Positive legacy: systematic examination of the nature of biological and environmental influences on development

■ Age as an explanatory variable

- Lifespan definitions culturally and historically constrained
- Different age-grades/norms in different culture cohorts → physical age, psychological age and social age
- Neugarten's social clock socially prescribed time for things to happen

Week 2A – Genetic and environmental influences

■ Intellectual background to Nature/Nurture discussion:

- <u>Darwin:</u> Genetic variation in a species
 - ⇒ Some genes more adaptive than others
 - ⇒ Genes that aid adaptation are more likely to be passed on natural selection
- Mendel: Individual heredity (peas)
- Watson and Crick: DNA molecule
- Behavioural genetics: the study of the contributions of nature and nurture to human and animal behaviour and behavioural diversity
- Gottlieb: Epigenetics
 - ⇒ Changes in gene expression due to base pairs in DNA being turned off or turned on in response to environment/experience

■ Genes:

- Units of hereditary info blueprint for development
- Comprised of short segments of DNA
- Genes (in pairs, one from each parent) are carried on chromosomes (n=46)

<u>Mitosis</u>	<u>Meiosis</u>
 Normal cell replication for somatic reproduction (skin, blood, muscles) Process that ensures duplicate cell in genetically identical to the original Each cell contains 2 sets of chromosomes Used for growth and repair of tissues 	 Special process of cell division for sexual reproduction Produces 'haploid cells' each with half the number of chromosomes as the parent cell After division, each cell has only one set of chromosomes Occurs prior to formation of sperm/ova Occurs only in gametes At fertilisation, chromosomes are recombined to produce a different genetic combination (mixture of maternal and paternal DNA)

<u>Mutations:</u> 'errors' in the process of meiosis or mitosis mean that chromosomal mutations can occur (1/200 foetuses)

Genetic Principles:

- Dominant-recessive gene principle
 - ⇒ 2 hereditary elements for each trait 1 from male parent, 1 from female parent
 - ⇒ The 2 alternate forms of the same gene are called 'alleles'
 - ⇒ Only if both genes in a pair are recessive will the influence of the recessive gene be expressed
 - ⇒ Genotype = genetic constitution
 - ⇒ Phenotype = observable characteristic
 - ⇒ Genetic disorders:
 - If disorders are dominant = expressed in every individual carrying the allele e.g. Huntingdon's disease (1 in 2 chance of inheritance)
 - If disorders are recessive = both parents have to carry the gene e.g. Cystic fibrosis (1 in 4 chance of inheritance)
 - ⇒ Co-dominance: effect of recessive gene not totally makes phenotype is a compromise e.g. AB blood type, skin colour