OLS Estimates

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Coefficient of Determination

$$SST = SSE + SSR$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{u}_i$$

$$Total Sum of Squares \qquad Explained Sum of Squares \qquad Sum of Squares Residuals$$

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

Interpretations

Dependent	Independent	Interpretation of β_1	
у	x	$\Delta y = \beta_1 \Delta x$	
		One unit change in 'x' leads to a eta_1 -unit	
		change in 'y'	
У	$\log(x)$	$\Delta y = \left(\frac{\beta_1}{100}\right)\% \Delta x$	
		One percent change in x leads to $\left(\frac{\beta_1}{100}\right)$	
		unit change in y	
$\log(y)$	x	For small change	
		$\%\Delta y = (100 \ \beta_1) \ \Delta x$	
		One unit change in x leads to $(100 \beta_1)\%$	
		change in y	
		For large and exact change $\% \Delta y = 100[\exp(\beta_1 \Delta x) - 1]$	

(full version available on paid notes)

Week 1

(1) Types of Data

- Time series: sets of observations taken at different points in time
- Panel data: same individual data is collected over time
- Pooled cross sections: two or more cross sections are combined in one data set

(2) Causal Effect

- Holding all other relevant factors constant, how does variable y change if variable x changes?
- In practice, it is unfeasible to literally hold 'all else equal', and thus causality can be difficult to establish

(3) Population Regression Function (PRF)

 $E(y|x) = E(\beta_o + \beta_1 x + u|x)$ $E(y|x) = \beta_o + \beta_1 x + E(u|x)$ Because of ZCM assumption, E(u|x) = 0 $E(y|x) = \beta_0 + \beta_1 x$

• This is the best model we can have, but no models are perfect an hence the population regression model takes another form

(4) Population Regression Model

$$y = \underbrace{\beta_0 + \beta_1 x}_{E(y|x)} + \underbrace{u}_{Non-systematic}$$

(5) Zero Conditional Mean (ZCM)

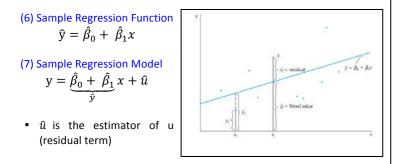
- E(u|x) = E(u) → u is mean independent of x and, E(u) = 0 → The average value of u is zero ∴ E(u|x) = 0
- This assumption is not very restrictive the intercept could always be redefined to hold this assumption:

Suppose $E(u) = \alpha_0 = 0$, the model can always be rewritten with the same slope, but a new intercept and error; where the new error has a zero expected value:

$$y = \beta_0 + \beta_1 x + u + \alpha_0 - \alpha_0$$

$$y = (\beta_0 + \alpha_0) + \beta_1 x + (u - \alpha_0)$$

 $E(u - \alpha_0) = E(u) - E(\alpha_0)$ $E(u - \alpha_0) = \alpha_0 - \alpha_0$ $E(u - \alpha_0) = 0$



Week 2

(1) Ordinary Least Squares

 The residual for observation *i* is the difference between the actual y_i and its fitted:

$$\hat{u}_i = y_i - \hat{y}_i$$
$$\hat{u}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_i x_i)$$

• OLS solves the minimisation problem: $\min \sum_{i=1}^{n} \hat{u}_{i}^{2}$, to estimate $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

(2) Algebraic Properties of OLS

- Sample average of residuals is zero, $\sum_{i=1}^{n} \hat{u}_i = 0$

(3) Coefficient of determination

 It is the total variation in the dependent variable (y) that is explained by the regression (goodness of fit)

$$SST = SSE + SSR$$

$$\sum_{\substack{i=1 \\ \text{Total Sum of Squares}}}^{n} (y_i - \overline{y})^2 = \sum_{\substack{i=1 \\ \text{Explained Sum of Squares}}}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{\substack{i=1 \\ \text{Sum of Squares}}}^{n} \hat{u}_i$$

$$Sum of Squares \text{Residuals}$$

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST} \qquad 0 \le R^2 \le 1$$

- R^2 is equal to the squared correlation between y_i and \hat{y}_i
- Very high R² is common with time series data
- Low R² is common with cross sectional data

(4) 'Linear' models

- Linear regression means a regression that is linear in parameters – the βs are linear

Model	Dependent	Independent	Interpretation of $m{eta}_1$
Level-	у	x	$\Delta y = \beta_1 \Delta x$
level			One unit change in x leads to a
			eta_1 -unit change in y
Level-	у	$\log(x)$	$\Delta y = \left(\frac{\beta_1}{100}\right) \% \Delta x$
log			One percent change in x leads
			to $\left(rac{eta_1}{100} ight)$ unit change in y
Log-	$\log(y)$	x	$\%\Delta y = (100 \beta_1) \Delta x$
level			One unit change in x leads to
			$(100~eta_1)$ % change in y
Log-log	$\log(y)$	$\log(x)$	$\% \Delta y = \beta_1 \% \Delta x$
			One percent change in x leads
			to a β_1 % change in y

(5) Gauss-Markov Assumptions - Simple Linear Model

- SLR.1 Linear in parameters
- SLR.2 Random sampling
- SLR.3 Sample variation in the explanatory variable
- Sample outcomes on x are not all the same value
- SLR.4 Zero conditional mean $(u|x_1) = 0$
- SLR.5 Homoskedasticity $Var(u|x_1) = \sigma^2$
- SLR.1 4 → OLS estimators are unbiased E(β_j) = β_j
 Onbiasedness: on average the estimated coefficient they will equal to the true parameter.
- SLR.1 5 \rightarrow OLS estimators are
 - Best (minimum variance and most efficient)
 - Linear (linear SLR.1)
 - Unbiased (SLR.1 4)
 - Estimators

(6) Effects of Changing Units of Measurement

- If y is multiplied by a constant c → OLS intercept and slope estimates are also multiplied by c
- If x is multiplied by a constant c → OLS intercept is unchanged but the slope estimate is divided by c
- R² is the same when varying the units of measurement
- •