The IS Curve

Setting Up the Economy

- National income identity

 - $\begin{array}{ccc} \circ & Y_t = C_t + I_t + G_t + EX_t IM_t \\ & & & \\ & & & \\ & & & \\ \end{array}$ Can also be written as $Y_t + IM_t = C_t + I_t + G_t + EX_t$
 - Left side is the total resources available to the economy
 - Aggregate supply
 - Right side is total uses
 - o Aggregate demand
- Five additional equations that explain how each of the uses of output is determined
 - $\circ \quad G_t = \overline{a}_g \overline{Y}_t$ $\circ \quad EX_t = \overline{a}_{ex}\overline{Y}_t$ $0 \quad IM_t = \overline{a}_{im} \overline{Y}_t$ $0 \quad \frac{l_t}{\overline{Y}_t} = \overline{a}_i - \overline{b}(R_t - \overline{r})$
- Consumption and friends
 - \overline{Y}_t is an exogenous component of the model
 - Determined by the long-run model
 - $\circ \quad C_t = \overline{a}_c \overline{Y}_t$
 - Says that consumption is a fraction of total output
 - Empirically, \bar{a}_c is about 2/3
 - Potential output is also a lot smoother than actual output
 - Results in the conclusion that consumption is smoother than **GDP**
 - During a recession, people may keep their consumption at a steady level by drawing on their savings
 - Other equations have a similar form and similar interpretation
- The investment equation
 - Made up two parts
 - \bar{a}_i captures the long-run fraction of potential output that goes to investment
 - Second part captures how the interest rate enters the model
 - Amount of investment depends on the gap between the real interest rate R_t and the marginal product of capital \bar{r}
 - $ar{r}$ taken to be an exogenous parameter, determined by the long-run model
 - On a long-run balanced growth path, so no time subscript is included
 - If the marginal product of capital is low relative to the interest rate, then firms are better off saving their retained earnings in the financial market
 - Leads to a decrease in investment because
 - Vice versa, firms may find it profitable to borrow at the real interest rate and invest the proceeds in capital, leading to a rise in investment
 - \circ R_t thus represents marginal cost of capital, whilst \bar{r} represents the marginal benefit of capital

- \overline{b} captures how sensitive investment is to changes in the interest rate
- o In the long run, $\bar{r} = R_t$
 - Differences allowed for in short-run model as installing new capital to equate the two takes time

Deriving the IS Curve

- See book
 - $\circ \quad \tilde{Y}_t = \bar{a} \bar{b}(R_t \bar{r})$
 - Straight, downward sloping curve that relates short-run output to the interest rate
- Implications
 - The gap between the real interest rate and the MPK is what matters for output fluctuations
 - \circ An increase in the real interest rate R_t leads to a decline in short-run output
 - Firms find it more expensive to borrow in order to purchase capital equipment
 - Households see mortgage rates go up, resulting in a decline in housing investment
 - \circ $\;$ In the long run, the economy will settle to its long run values, $Y_t=\overline{Y}_t$ and $\tilde{Y}_t=0$
 - $\bar{r} = R_t$
 - Equation reduces to $0 = \bar{a}$
 - Because national income identity is equal to \overline{Y} and therefore the share parameters (\overline{a}_c , \overline{a}_i etc) must add up to 1
 - Thought of as the default case
- Because \bar{a} is derived from the demand equations for consumption, investment etc, we call it the aggregate demand shock
- Why is it called the 'IS Curve'?
 - IS stands for investment = savings
 - $\circ \quad Y C G + (IM EX) = I$
 - (Y T C) = private saving
 - (T G) = government saving
 - (IM EX) =foreign saving

Using the IS Curve

- Horizontal axis graphs \tilde{Y} , vertical graphs R_t
- An increase in the interest rate
 - o Effect
 - Raises borrowing costs
 - Reduces demand for investment
 - Reduces output below potential
 - Shifts the economy up the IS curve, does not shift the curve itself
- If the sensitivity to the interest rate is higher
 - o IS curve would be flatter
 - Any change in the interest rate would be associated with larger changes in output
- An positive aggregate demand shock
 - Means that output is higher at every interest rate
 - Means that the IS curve shifts out
- A shock to potential output

- \circ Since \overline{Y}_t doesn't enter the equation for the IS curve, shocks to potential output therefore leaves the IS curve unchanged
 - Reason is that shocks to potential output in our setup changes actual output by the same amount
- o Important to notice however that a new technology or earthquake may effect more than \overline{Y}_t
 - New technology may raise the marginal product of capital, leading to an increase in investment demand
 - Would shift the IS curve out and stimulate the economy
- Movement along or shift?
 - A change in *R* shows up as a movement along the IS curve
 - Any other change in the parameters of the short-run model causes the IS curve to shift

Microfoundations of the IS Curve

- Consumption
 - Based on two models
 - Permanent-income hypothesis
 - Life-cycle model of consumption
 - Both models observe that people seem to prefer a smooth path for consumption to a path that involves large movements
 - Application of the theory of diminishing marginal utility
 - Permanent income hypothesis
 - People will base their consumption on an average of their income over time rather than on their current income
 - Life-cycle model of consumption
 - Consumption is based on average lifetime income rather than on income at any given age
 - When people are young and in school, their consumption is typically higher than their income
 - As people age and their income rises, their consumption rises more slowly and they save more
 - In retirement income falls, but people still continue to consume at the same level
 - Live off their savings they have accumulated
 - o People clearly tend to smooth their consumption relative to income
 - $C_t = \overline{a}_c \overline{Y}_t$
 - Captures this insight by setting consumption proportional to potential output rather than to actual output
 - Actual output varies and so wouldn't capture
 - Heish finds that the LC/PI hypothesis works well for large and easy to predict changes in income but less well for small and harder-topredict shocks
- Multiplier effects
 - Suppose aggregate consumption responds to temporary changes in income
 - Modify the consumption equation:

$$\bullet \quad \frac{c_t}{\bar{Y}_t} = \bar{a}_c + \bar{x}\tilde{Y}_t$$

- Now includes an additional term that is proportional to short-run output
 - When the economy experiences a boom, consumption rises temporarily, proportionate to \bar{x}

- Assumed to be between 0 and 1
- IS curve then becomes

•
$$\tilde{Y} = \frac{1}{1-\bar{x}} \times \left[\bar{a} - \bar{b}(R_t - \bar{r}) \right]$$

O Multiplier is larger than 1

- Economic intuition
 - Consider an increase in investment reduces investment by 1%
 - Reduction in investment may cost workers their jobs
 - Unemployment leads to less consumption
 - Other firms may be forced to cut jobs because of decreased consumption
 - Results in a geometric series that decreases output
 - IS curve thus involves feedback that leads to 'vicious' or 'virtuous cycles'
 - Hence the multiplier
 - Multiplier doesn't change the overall form of the IS curve
 - Only results in the coefficients of \bar{a} and \bar{b} being larger
- What matters for consumption today
 - The permanent-income hypothesis
 - What matters is the present discounted value of your lifetime income, after taxes
 - Ricardian equivalence
 - What matters is the present value of what the government takes from the consumers rather than the specific timing of the taxes
- Investment
 - Two main determinants of investment at the firm level
 - Gap between the real interest rates and the marginal product of capital
 - Important issue as to how to calculate the return on capital
 - Firm's cash flow
 - The amount of internal resources the company has on hand after paying its expenses
 - A firm with a high cash flow finds it easy to finance additional investment
 - Generally more expensive for firms to borrow to finance investment because of 'agency problems'
 - Occur when one party in a transaction holds information that the other party does not possess
 - Adverse selection and moral hazards cause a banks to be careful how they lend and at what rate
 - Adverse selection
 - If a firm knows it is particular vulnerable
 - It will want to borrow because if the firm does well it can pay back the loans
 - If it fails, the firm cannot pay back the loan, but will instead declare bankruptcy
 - Moral hazard

- A firm that borrows a large sum of money may undertake riskier investments
 - If it does well can repay the loan
 - If it fails, it can declare bankruptcy
- If we rewrite the original equation we can capture such effects

$$\circ \quad I_t = \bar{a}_i \bar{Y}_t - \bar{b} (R_t - \bar{r}) \bar{Y}_t$$

- Cash flow effect seen in the presence of potential output
 - Introduction of \overline{Y}_t provides additional justification for a multiplier

- Government purchases
 - Can affect short-run economic activity in two ways
 - As a shock that can function as a source of fluctuations
 - Discretionary fiscal policy
 - o Eg. higher expenditure before the election
 - Captured by a temporary change in \bar{a}_q
 - Change in the tax rate can potentially change \bar{a}_i
 - Policy instrument that can be used to reduce fluctuations
 - Automatic stabilisers in the budget
 - Additional spending occurs automatically to help stablise the economy
 - Impact of fiscal policy on the economy depends on two additional considerations
 - Timing
 - Discretionary fiscal policies are often put in place only with considerable delay
 - By the time the policy is in place, the shock it was designed to mitigate may have passed
 - Government's budget constraint
 - 'No-free-lunch' principle
 - Higher spending today must be for, if not today but at some point in the future
 - o If the government raises taxes to pay for the spending, and the permanent-income hypothesis of consumption is applied, then the present discounted value of your income is lower, and hence individuals are worse off
 - Characterisation of the effects of fiscal policy
 - An increase in government purchases financed by an increase in taxes of the same amount will have a modest positive impact on the IS curve
 - Raise output by a small amount in the short run
 - An increase in spending today financed by an unspecified change in taxes and/or spending at some future date will shift the IS curve out by a moderate amount
 - These effects can be even larger during a recession
 - Economies resources are underutilised
- Net exports
 - o Trade balance

- Deficit
 - Economy imports more than it exports
 - IS curve shifts left and reduces short-run output
- Surplus
 - Economy exports more than it imports
 - IS curve shifts right

