Concave and Convex Functions

- The function f(x,y) is concave if its domain is convex and the line segment joining any two points on the graph is never above the graph
- Definition of a concave function
 - A function $f(x) = f(x_1, ..., x_n)$ defined on a convex set S is concave in S if:
 - $f((1-\lambda)x^0 + \lambda x) \ge (1-\lambda)f(x^0) + \lambda f(x)$
 - For all x^0 , $x \in S$ and all $\lambda \in (0,1)$
 - Eg. the line segment joining any two points in the domain is below the graph
- The function f is convex in S if f is concave
- Other definitions:
 - o f is concave iff $M_f = \{(x,y): x \in S \text{ and } y \leq f(x)\}$ is convex
 - o f is convex iff $M_f = \{(x, y) : x \in S \text{ and } y \ge f(x)\}$ is convex
- Jensen's Inequality
 - o A function f of n variables is concave on a convex set S in \mathbb{R}^n iff the following inequality is satisfied for all x_1,\ldots,x_n in S and all $\lambda_1\geq 0,\ldots,\lambda_m\geq 0$ with $\lambda_1+\cdots\lambda_m=1$:

$$f(\lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m) \ge \lambda_1 f(\mathbf{x}_1) + \dots + \lambda_m f(\mathbf{x}_m)$$

- o Continuous version
 - Let x(t) and $\lambda(t)$ be continuous functions in the interval [a,b] with $\lambda(t) \geq 0$ and $\int_a^b \lambda(t) dt = 1$. If f is a concave function defined on the range of x(t), then:

•
$$f(\int_a^b \lambda(t)x(t)dt) \ge \int_a^b \lambda(t)f(x(t))dt$$

Useful Conditions for Concavity and Convexity

- f and g concave (convex) and $a \ge 0, b \ge 0$, then af + bg concave (convex)
- f(x) concave and F(u) concave and increasing, then U(x) = F(f(x)) concave
- f(x) convex and F(u) convex and increasing, then U(x) = F(f(x)) convex
- f and g concave (convex), then $h(x) = \min\{f(x), g(x)\}\ is\ concave\ (convex)$
- Suppose that $f(x) = f(x_1, ..., x_n)$ has continuous partial derivatives in an open, convex set S in \mathbb{R}^n then
 - o f is concave in S iff for all $x^0, x \in S$

•
$$f(\mathbf{x}) - f(\mathbf{x}^0) \le \Sigma_{i=1}^n \frac{df(\mathbf{x}^0)}{dx_i} (x_i - x_i^0)$$

- o f is strictly concave iff the inequality above is strict for all $x \neq x^0$
- The corresponding result for convex (or strictly convex) functions is obtained by replacing \leq (or <) by \geq (or >) in the inequality above

Second-Derivative Tests for Concavity/Convexity: The two-variable case

- Let z = f(x, y) be a function with continuous partial derivatives of the first and second order, defined over an open convex set S in the plane, then
 - f is concave iff:

•
$$f_{11}^{"} \le 0, f_{22}^{"} \le 0 \text{ and } \begin{vmatrix} f_{11}^{"} & f_{12}^{"} \\ f_{21}^{"} & f_{22}^{"} \end{vmatrix} \ge 0$$

o *f* is convex

$$\qquad \qquad f_{11}^{\prime\prime} \geq 0, f_{22}^{\prime\prime} \geq 0 \text{ and } \begin{vmatrix} f_{11}^{\prime\prime} & f_{12}^{\prime\prime} \\ f_{21}^{\prime\prime} & f_{22}^{\prime\prime} \end{vmatrix} \geq 0$$

- Also possible to vary this to give sufficient conditions for strict concavity/convexity
 - o f is strictly concave iff

•
$$f_{11}^{"} < 0$$
 and $\begin{vmatrix} f_{11}^{"} & f_{12}^{"} \\ f_{21}^{"} & f_{22}^{"} \end{vmatrix} > 0$

- o *f* is strictly convex iff
 - $f_{11}'' > 0$ and $\begin{vmatrix} f_{11}'' & f_{12}'' \\ f_{21}'' & f_{22}'' \end{vmatrix} > 0$
- Sufficient conditions for global extreme points
 - Let f(x, y) be a function with continuous partial derivatives of the first and second order in a convex domain S, and let (x_0, y_0) ben an interior point of S and which f is stationary
 - If for all (x, y) in S, one has $f_{11}''(x, y) \le 0$, $f_{22}''(x, y) \le 0$ and $f_{11}''(x,y)f_{22}''(x,y) - [f_{12}''(x,y)]^2 \ge 0$, then (x_0,y_0) is a maximum point for f(x, y) in S

Second-Derivative Tests for Concavity/Convexity: The n-variable case

- Suppose that z = f(x) is a C^2 function in a domain S in \mathbb{R}^n
 - $\circ \quad \mathbb{H}(\mathbf{x}) = \left[f_{ij}''(\mathbf{x})\right]_{m imes n}$ is the Hessian matrix of
 - \circ The *n* determinants:

$$D_k(\mathbf{x}) = \begin{vmatrix} f_{11}''(\mathbf{x}) & \dots & f_{1k}''(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ f_{k1}''(\mathbf{x}) & \dots & f_{kk}''(\mathbf{x}) \end{vmatrix} (k = 1, \dots, n)$$

- Then:
 - o *f* is strictly concave in *S* iff
 - $(-1)^k D_k(\mathbf{x}) > 0$ for k = 1, ..., n and for all $\mathbf{x} \in S$
 - f is strictly convex in S iff
 - $D_k(\mathbf{x}) > 0$ for k = 1, ..., n and for all $\mathbf{x} \in S$
- Saddle point
 - o If $D_n(x^0) \neq 0$ and the function is neither concave or convex, then a stationary point x^0 is a saddle point

Quasi-Concave and Quasi Convex Functions

- The function f, defined over a convex set $S \subset \mathbb{R}^n$, is quasi-concave if the upper level set $P_a = \{x \in S: f(x) \ge a\}$ is convex for each number a
 - Quasi convex if -f is quasi-concave
 - f is quasi-convex iff the lower level set $P_a = \{x: f(x) \le a\}$
 - - If f(x) is concave, then f(x) is quasi-concave
 - If f(x) is convex, then f(x) is quasi-convex
- Let f be a function of n variables defined over a convex set S in \mathbb{R}^n , then f is quasiconcave iff, for all $x, x^0 \in S$, and all $\lambda \in \{0,1]$, one has

 - $f(x) \ge f(x^0)$, then $f(1 \lambda)x + \lambda x^0 \ge f(x^0)$
- **Properties**
 - o A sum of quasi-concave (quasi-convex) functions is not necessarily quasiconcave (quasi-convex)
 - o If f(x) is quasi-concave (quasi-convex) and F is strictly increasing, then F(f(x)) is quasi-concave (quasi-convex)
 - o If f(x) is quasi-concave (quasi-convex) and F is strictly decreasing, then F(f(x)) is quasi-convex (quasi-concave)
- **Determinant condition**
 - Bordered Hessians

 Ordinary Hessians used for examining concavity of a function are 'bordered' by an extra row and column consisting of the first orderpartials of the function:

$$D_r(\mathbf{x}) = \begin{vmatrix} 0 & f_1'(\mathbf{x}) & \dots & f_r'(\mathbf{x}) \\ f_1'(\mathbf{x}) & f_{11}''(\mathbf{x}) & \dots & f_{1r}''(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_r'(\mathbf{x}) & f_{r1}''(\mathbf{x}) & \dots & f_{rr}''(\mathbf{x}) \end{vmatrix}$$

- Necessary condition for f to be quasi-concave is that $(-1)^r D_r(\mathbb{X}) \ge 0$ for r = 1, ..., n and all $\mathbb{X} \in S$
- A sufficient condition for f to be quasi-concave is that $(-1)^r D_r(\mathbb{X}) > 0$ for r = 1, ..., n and all $\mathbb{X} \in S$

Local Extreme Points

- Saddle point
 - O A stationary point with the property that there exist points (x,y) arbitrarily close to (x_0,y_0) with $f(x,y) < f(x_0,y_0)$ and there also exists such points with $f(x,y) > f(x_0,y_0)$
- Second derivative test for local extrema
 - Suppose f(x,y) is a C^2 function in a domain S, and let (x_0,y_0) be an interior stationary point of S
 - o Let
 - $A = f_{11}''(x_0, y_0), B = f_{12}''(x_0, y_0), C = f_{22}''(x_0, y_0)$
 - Then:
 - If A < 0 and $AC B^2 > 0$, then (x_0, y_0) is a (strict) local maximum point
 - If A > 0 and $AC B^2 > 0$, then (x_0, y_0) is a (strict) local minimum point
 - If $AC B^2 < 0$, then (x_0, y_0) is a saddle point
 - If $AC B^2 = 0$, then (x_0, y_0) could be a local maximum, local minimum or a saddle point
 - Note that if $AC B^2 > 0$, then AC > 0 and if A > 0, then C > 0 by implication

Extreme Value Theorem

- Sets
 - \circ A point (a,b) is called an interior point of a set S in the plane if there exists a circle centred at (a,b) such that all points strictly inside the circle lie in S
 - A set is an open set if it consists only of interior points
 - The point (a, b) is called a boundary point of a set S is every circle centred at (a, b) contains points of S as well as points in its complement
 - If S contains all its boundary points, it is closed
 - Bounded
 - If the whole set is contained within a sufficiently large circle
 - Compact 11
 - A set that is both closed and bounded
- Extreme value theorem
 - \circ Suppose the function f(x,y) is continuous throughout a nonempty, closed and bounded set S in the plane

- Then there exists both a point (a, b) in S where f has a minimum and a point (c, d) in S where f has a maximum:
 - $f(a,b) \le f(x,y) \le f(c,d)$ for all (x,y) in S
- Finding maxima and minima
 - o Procedure
 - Find all stationary points of f in the interior of S
 - Find the largest and the smallest value of f on the boundary of S, along witht eh associated points
 - Compute the values of the function at all the points found in step 1 and 2. The largest function value is the maximum and the smallest is the minimum