CHM1022

ORGANIC CHEMISTRY (Lectures 1-12)

<u>Lecture 1 - Functional Groups</u>

Functional Groups

• Alkanes: Single C-C bonds (saturated) -ane-

Alkenes: Double C-C bonds (unsaturated) -en-

• Alkynes: Triple C-C bonds (unsaturated) -yn-

• Arenes: Benzene-like rings (unsaturated)

Alcohols: R-O-H -ol

Carboxylic Acid: R-C-O-O-H -oic acid

• Esters: R-(C=O)-O -ol -oic acid

• Ethers: R-O-R'

Alkyl Halides: R-X

• Amines: R-NH₂-amine

• Aldehydes: R-C-H-O -al

• Ketones: R-(C=O)-R -one

Amides: R-C-O-N-H-R'

Isomers

- Same compounds with the same molecular formula but a different connectivity of atoms
- Possess different physical and chemical properties

Free Rotation

- Staggered (opposite ends) → Lower energy
- Eclipsed (same ends) → Higher energy

Nomenclature of Compounds

- The longest chain closest to a functional group is '1' (-OH takes priority)
- Name down the chain with the smallest number of carbons in the chain
- Include functional groups with suffixes and infixes (prop-1-ol)

Alcohols

- Polar
- High boiling point
- Soluble in water

Amines

- Both 1° and 2° amines form intermolecular hydrogen bonds
- N-H----N hydrogen bonds are not as strong as O-H----O due to electronegativity
- Solubility is also determined by the length of the carbon chain
- More C = less soluble

<u>Lecture 2 - Stereochemistry</u>

Terminology

- Constitutional Isomers: Isomers with a different connectivity
- Stereoisomers: Isomers with the same molecular formula and the same connectivity but a different orientation in space
 - Enantiomers: Mirror images
 - Diastereoisomers: Not mirror images
- Geometric Isomers: Broken into two orientations
 - Cis: Same side
 - Trans: Different side

Chirality

- Chiral: A molecule that is not superposable on its mirror image
- Achiral: A molecule that is superposable on its mirror image
 - Has a plane of symmetry
- Many chiral molecules contain an <u>asymmetric carbon center</u>, called a <u>stereogenic center</u>
- Drawn on paper with dashed and bold lines

Enantiomers

- Have identical physical and chemical properties in an <u>achiral</u> environment
- · Human body is a chiral environment
- Labelled "R" or "S" enantiomers

Optical Activity

- If a sample is optically inactive (achiral), the <u>plane is unchanged</u> and no rotation is detected
- If a sample is optically active (chiral), the <u>plane of polarisation is</u> rotated. The polarimeter is used to determine both the direction and magnitude of the rotation
- Enantiomers can be distinguished by how they interact with a plane of polarised light; they are optical isomers
- Dextrorotatory (d) or (+): Rotation of the plane clockwise
- Levorotatory (I) or (-): Rotation of the plane anticlockwise
- Racemic Mixture (±): Equal amount of the enantiomers (1:1 ratio of R:S)

Naming Enantiomers

- Used to designate configuration at a stereocentre
- The labels R and S are use to differentiate
 - 1. Locate the stereogenic centre
 - Assign a priority (1 → 4) to each substituent
 - 3. Orient the lowest priority substituent away from you (usually H atom)
 - 4. The remaining three groups then project towards you

Naming Enantiomers II

- (+) and (-) do not denote R and S
- The higher the atomic number, the higher the priority
- The atoms directly attached to the stereocentre are examined first
- In the case of double bonds, the atoms are treated as two atoms attached by single bonds
- For a pair of enantiomers, the value of the specific rotation is the same-but-opposite-in-sign

Stereoisomers

- For a molecule with 1 stereocentre, $2^1 = 2$ stereoisomers are possible
- For a molecule with 2 stereocentres, $2^2 = 4$ stereoisomers are possible
- For a molecule with n stereocentres, n = 2ⁿ stereoisomers are possible

Meso Forms

