DNA Replication

- DNA strands separate and the nucleotides in the cells come in and join the nitrogenous bases
- Enzyme Helicase "unzips the DNA" ready for replication
- Enzyme Primase adds an RNA Primer which begins the replication process
- DNA polymerase then adds the DNA nucleotides from the 5-carbon side to the 3-carbon side!
- CAN ONLY ADD NUCLEOTIDES FROM THE 5-CARBON SIDE TOWARDS THE 3-CARBON SIDE therefore, there is a lagging and leading strand...

Leading and Lagging Strands

- The leading strand can code continuously from 5-carbon to 3-carbon
- The lagging strand can only code from 5-carbon to the 3-carbon so it must reset itself to allow for this
 - RNA primer is added before the DNA polymerase adds the nucleotides to form the DNA
 - This leads to Okazaki fragments which are these separately created fragments
 - o Exonuclease then comes in and removes the RNA

Transcription

- Transcription is the formation of messenger RNA from DNA
- RNA
 - o Exists as a single strand
 - RNA has a Uracil (U) instead of Thymine (T)
 - o RNA has an extra hydroxyl group that DNA does not have

• Steps of Transcription:

- First the RNA polymerase opens up the DNA double helix
- RNA reads the DNA strand from Carbon-5 to Carbon-3
- Adds nucleotides (A,G,C and U) to the Carbon-3 end
- When RNA reaches the termination code it breaks free from the template and the RNA disassociates itself
- Exons are then removed from the RNA and put together to form mRNA
 - Done through "splicing" where the introns are cut by spliceosomes and removed in loops from the RNA transcript leaving the valuable exons

RNA codes from the

3-carbon side

Translation

 Translation is the process in which cellular ribosomes create proteins from information provided by the mRNA

• Process:

- o mRNA is transported out of the nucleus
- o In the cytoplasm, ribosomal units bind to the mRNA
- o tRNA attaches to specific amino acids with the help of enzymes
- o mRNA information is used by the ribosome to correctly order the tRNA
- Peptide bonds form between the amino acids and detach while the tRNA leaves the ribosome

Ribosome has two sites

- o "A" is the entry point
- o "E" is the exit point
- Stops when it cannot create an amino acid for a codon ("stop codon")

The codon is found on the mRNA while the **anticodon is found on the tRNA**. They are **complimentary.**

Cell structure and function

Organelles in the cells are specialized structures that perform specific functions (nucleus, mitochondria,...)

In a cell, the living tissue that surrounds the nucleus is known as cytoplasm and it contains many different organelles.

Structure of animal cells (eukaryotic cells):

Eukaryotic cells:

- Have a nucleus with DNA
- Contain membrane-bound organelles (prokaryotic cells do not)

Cell surface membrane

Role is to enclose the cell, support the cell contents, act as a selective barrier and play a role in cell communication

This is called the $\underline{\text{fluid-mosaic}}$ model

Features:

- Double layer of phospholipid molecules
 - Contain a hydrophilic (water-loving) polar-phosphate (blue) head that faces outwards and inwards of the cell
 - The fatty acid ends (lipid tails) of the phospholipids are hydrophobic (water-hating) and face inwards of the double layer of phospholipids.
 - Both the phosphate heads and lipid tails are very dynamic and allow for a range of movement
- Carbohydrates are found in amongst the phospholipids for added strength and flexibility
- Protein membrane channels (pink)
 - Float in the phospholipids and create "channels" which allow for the movement in and out of the cell membrane
 - Allow for movements across a concentration gradient (passive) or can be active where energy is required to move ions across the membrane

Nucleus

- Ribosomal RNA is formed in the nucleolus before it leaves via pores and goes onto form ribosomes
- DNA found in the nucleus
- Nucleus pores are the places which allow for materials to pass in and out of the nucleus

Ribosomes

- Ribosomal RNA leaves the nucleus and forms itself into ribosomes
- Organelle where proteins are produced
- Can be free floating in the cytoplasm or found on the endoplasmic reticulum
- Go on and perform translation (DNA reproduction)

Endoplasmic reticulum

Rough

- Has ribosomes embedded onto the surface
- Allows ribosomes to synthesise proteins for export from the cell

• Smooth

- Does not have any ribosomes on the surface

Golgi apparatus

- Closely packed stacks of membrane sacks (as they mature they move to the front)
- Collects, packages and distributes lipid and proteins manufactured by the endoplasmic reticulum (ER)
- Golgi apparatus sometimes modifies these lipids and proteins by adding carbohydrates to them (tag the protein/lipids which tell them where to go)
- Packaged into secretory vesicles which pinch of from the margins of the Golgi apparatus

Lysosomes

- Membrane bound vesicles formed from the Golgi apparatus
- Contain enzymes which function as a cells digestive system
- Vesicles arriving by endocytosis can fuse with lysosomes which are then broken down

